CENG 311
Computer Architecture

Lecture 2

Introduction to FPGA and
VHDL

Asst. Prof. Tolga Ayav, Ph.D.

Department of Computer Engineering
|zmir Institute of Technology

Programmable Logic Devices (PLD)

A programmable logic device or PLD is an electronic component used to build
reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a
PLD has an undefined function at the time of manufacture. Before the PLD can
be used in a circuit it must be programmed (i. e. reconfigured).

ROM: Read Only Memory

« PAL: Programmable Array Logic
« GAL: Generic Array Logic
« CPLD: Complex Programmable Logic Device
. FPGA: Field Programmable Gate Array
Izmir Institute of Technology Embedded Systems Lab

PLD vs. ASIC

A
10,000+ = ASIC Only

2>
I .=
o & é‘ 1000 —

k]
E e ASIC or PLD:
E’ % = Cost vs. Time to Market
— 0

100 =
FLD may be nheape\
10 | | | .
1 10 100 1000+

Clock Frequency (MHz)

Izmir Institute of Technology Embedded Systems Lab

GALs and PALs

Input Terms

\\({\\A\\A’\\A,.,vv

ANDAOR
Output Terms

{@W@W@Q

Izmir Institute of Technology Embedded Systems Lab

Output =A&C&D&E&F

> Programmed Connection

Output
Enable [,
AND A | Vo
ray Pin
Terms b Q
Clock —>
Configuration
- Information
Feedback to <
AND Array
LCﬂnf:'gur&ﬁﬂn
Information

Izmir Institute of Technology Embedded Systems Lab

Using ROMs to Implement a Function

OR Array OR Array
0 0
1 1 - . .
2 2 . . .
3 9 .
A, 4 A, 4
' 5 ' 5
A, 6 A, 6
- 4-to-16 7) 4-to-16 7
A, Decoder 8 A, Decoder 8
9 9
A 10 A 10
0 11 v 11
12 12
13 13
14 14
15 15
' B e N wlwilwiss
AN A AR N AN
r Y YT g 7
D'-‘. DE DI Dﬂ D, DE DI DH
Izmir Institute of Technology Embedded Systems Lab

Example: Using 16x4 ROM to implement a function

Implement the following function:

Filwxyz) =wxyz+wxz' + wryz + wx'vz + wx'vz' + wxyg'

Frlwxyz) =wxy7 + whk

OR Array
0 .
1
2
3
w A 4 .
5 .
x A, B .
B 4-t0-16 7| .
y A Decoder 8
g9
z A 10
0 11
12
13
14
15
wiviw,
", M \T.
by D, D, D,
F, F,
Izmir Institute of Technology Embedded Systems Lab

Example: Using 4x4 PAL to implement a function

Implement the following function:

First we can reduce the terms
like as follows:

Fr(wax,y.z) =wx'vz+wx'vz' + wxy'z'+ wxyz
=F, +whky'?' + wxyz

Fy(wa,yz) =wx vy + wxyz+wix'vz' + wix'yz

=wXx' (¥Z'+yz+ ¥z +y2)
=wx'

Izmir Institute of Technology

Fy(wax,y.2) = wi'yz + wx'yz'

Fy (wx,y,z) = wix'yvz+ wx'vz'+ wixy'z'+ wxyz

Fy(wx,y,z) =wxyZ + wviz+wiv' + wix'yzg

1

o

o

v

Y

selelelelnle
U U

WA

wgwwg

Embedded Systems Lab

Complex Programmable Logic Device

(CPLD)

(CPLD) is capable of implementing a circuit with upwards of 10,000 logic gates.
Sequential circuits can also be implemented with CPLDs.

Izmir Institute of Technology

ly

Y

K¢

'y

) >
—Clock
o
) >~ Qj
—Clock
u—cc::]—T

Embedded Systems Lab

Internal Structure of CPLDs

I/O /O
Block Block
F 1 Iy
. ¥
vo ., Programmable Interconnect 5 | VO
Block |~ ry £ i ~ | Block
4 w
Logic g Logic - :
Array u§ Array u§ .
Block o Block &
= 5 .
= =
= >
vo -, < e | vo
Block | ry & X = - | Block
g a
¥ g ¥ g
: o , = .
Logic a Logic a
Array Array .
Block Block .
Y .
v w
I/O /O
Block Block
[zmir Institute of Technology Embedded Systems Lab

Field Programmable Gate Array (FPGA)

Field programmable gate arrays (FPGAs) are complex programmable logic devices that are
capable of implementing up to 250,000 logic gates and up to 40,960 RAM bits, as featured by
the Altera FLEX10K250 FPGA chip.

/O 1O /O [/O
Block Block Block Block

S |

IO 4—»{ Row]nlem{_InnECl > 1/O
Block) , , Block

—===-] e 8 ———=-] F----- .

| T 5 | 5 | |

Logic Array : Ll = = : |

LAB 5 tapd | | & || Las- iABd |

o | o |

| a | | 2 | |

I 2 | | 8 | I

I & | | & | I

| L I £ | I
o 4—»{ | | Row]nler-::(_InnE(:l | e 110
Block _ _ . . Block

| | | I

| | I |

Logic Array | I | I

Block I | I |

\:._ LAB— LAB-{ | : LAB LABH |

| |

I I ' |

' [' |

L L

. Embedded
I I Array Block I I
o /O IO L/O
Block Block Block Block

Izmir Institute of Technology Embedded Systems Lab

FPGA Internal Structure (1)

EAB:

The embedded array consists of a series of embedded array blocks (EAB). When
implementing memory functions, each EAB provides 2,048 bits, which can be used to create
RAM, dual-port RAM, or ROM. EABs can be used independently, or multiple EABs can be

combined to implement larger functions.

LAB:

The logic array consists of multiple logic array blocks (LAB). Each LAB contains eight
logic elements (LE) and a local interconnect. LE is the smallest logical unit in the
FLEX10K architecture. Each LE consists of a 4-input look-up table (LUT) and a
programmable flip-flop. The 4-input LUT is a function generator made from a 16-to-1
multiplexer that can quickly compute any function of four variables.

Izmir Institute of Technology Embedded Systems Lab
s

FPGA Internal Structure (2)

4-input LUT
Lol ol of of of il i of i ol of
lnnnm
Em‘ialﬁ%eg R ey Register Bypass
ariable
Variable C 16-10-1 MUX
Variable D |

D Ser (‘) ?7 T{] Il]tﬂ'l‘Cﬂl]l]ﬁC[
—Clock

Register
Clear Bypass Select

Programmable
Flip-flop

All the EABs, LABs, and I/O elements, are connected together via the FastTrack
interconnect, which is a series of fast row and column buses that run the entire length
and width of the device. The interconnect contains programmable switches so that the
output of any block can be connected to the input of any other block.

Each I/O pin in an I/O element is connected to the end of each row and column of the
interconnect and can be used as either an input, output, or bi-directional port.

Izmir Institute of Technology Embedded Systems Lab

VHDL

\e/llélalroir%@ hardware description language. It describes the behavior of an

circuit or system, from which the physical circuit or system can then be attained
(implemented).

VHDL entry)
(RTL level) ——

Compilation
-

Netlist
(Gate level)
Synthesis < l{}ptimi:{utinn
Optimized nethist

(Gate level) Simulation

e
Place & Route

Physical 3
device Simulation

Izmir Institute of Technology Embedded Systems Lab

EDA (Electronic Design Automation)
Tools

Altera’s Quartus Il

Xilinx’s ISE suite

ModelSim (a simulator from Model Technology, a Mentor Graphics company)

Leonardo Spectrum (a synthesizer from Mentor Graphics)

SRRl synthesizer from

|YIaxPIus

Izmir Institute of Technology Embedded Systems Lab

Translation of VHDL Code into a Circuit

ab cin | 5 cout
a4 —p
L S oo 0 0 0
by Full 0r 0 |1 0
Adder 10 0 1 0
—p= COul
cin —p 11 0 0 1
o0 1 1 0
o1 1 0 1
10 1 0 1
11 1 1 1
ENTITY full adder IS
FORT (a, b, cin: IN BIT;
8, cout: OQUT BIT) ;
END full adder;
ARCHITECTURE dataflow OF full adder IS ———E}

BEGIN
8 <= a MOR b XOR cin;
cout <= (a AND b) OR (a LND cin) OR
(b AND cin) ;
END dataflow;

Izmir Institute of Technology Embedded Systems Lab

VHDL Code Structure

Fundamental VHDL Units:

LIBRARY declarations: Contains a list of all libraries to be used in the design.
For example: ieee, std, work, etc.

ENTITY: Specifies the 1/0O pins of the circuit.

i
JARCHITECTURE: Contains the VHDL code proper, which describes how the
circuit should behave (function).

Library declarations:

LIBRARY 1eee; -—- A semi-colon (;) iIndicates
USE 1eee.std logic 1164.all; -- the end of a statement or
LIBRARY std; —— declaration, while a double
USE std.standard.all; —- dash (--) i1ndicates a comment.

L IBRARY work;
USE work.all;

Izmir Institute of Technology Embedded Systems Lab

VHDL Syntax

entity N1 is port{f) end Ni:
architecture No of N; is

[[}] begin ' end Ny [Circuit declaration)
Ss<=¢€ (Signal assignment)
s <= ¢ when b (Conditional signal assig.)
process(W') is [[D)] begin S end (Process
for v in % to iy generate (' (| Generate
entity N port map(W) (Comp. instantiation)
C'1;Ca (Parallel composition)
vi=e (Variable assignment)
s<=¢€ (Signal assignment)
aley)i=ea (Array assignment)

if b then S5, else 5; endif (conditional)
case ¢ when 1 => 51...

when i, => 5, end case (conditional)
for v in O to ¢

loop S end loop ([teration)
5135 (sequencing |

VHDL Syntax (cont'd)

b by = by | true | false
vlas|e| b
rising edge(s)
falling edpgeis)
i | LE | = | t'-!lzt‘jl | €1 1) Eg
€1+ e2 | e1 % e2
variable v :integer [=i|:
signal s:stdlogic [="1"|" 0]
signal s:std_logic_vector
(71 to iz2)[:=ial:

5]
D

.D1:.DQ
signal s: std_logic; (Port declaration)
signal s:std_logic_vector

(i, to ig):

T
— i —

H1:Hg

ENTITY:

‘[Ahré ENTITY is a list with specifications of all input and output pins (PORTS) of
circuit. Its syntax:

ENTITY entity name IS
PORT (

port name : signal mode signal type;
port name : signal mode signal type;

R
END entity name;

The mode of the signal can be IN, OUT, INOUT, or BUFFER. IN and OUT are
truly unidirectional pins, while INOUT is bidirectional. BUFFER, on the other
hand, is employed when the output signal must be used (read) internally.

— OUT

IN —»| Circuit = [NOUT

:rb BUFFER

Izmir Institute of Technology Embedded Systems Lab

ARCHITECTURE:

The ARCHITECTURE is a description of how the circuit should behave (function).
lts syntax is the following:

ARCHITECTURE architecture name OF entity name IS
[declarations]

BEGIHN
(code)

END architecture name;

Izmir Institute of Technology Embedded Systems Lab
s

Example: DFF with Asynchronous Reset

] e e
2 LIBRARY ieee:
3 USE ieee.std logic_1164.all;
d —-— .| -

DFF 5 ENTITY dff IS

6 PORT (d, clk, rst: IN STD_LOGIC;
clk —"'—> 7 g: OUT STD LOGIC);
8 END dff;
st —p— 0 e e
10 ARCHITECTURE behavior OF dff IS
11 BEGIN
12 PROCESS (rst, clk)
13 BEGIN
14 IF (rst='1') THEN
15 g <= '0';
16 ELSIF (clk'EVENT AND clk='l') THEN
17 g == d;
18 END 1IF;
19 END PROCESS;
20 END behavior:
2] —— e ——————— e
Izmir Institute of Technology Embedded Systems Lab

Data Types

Synthesizable data types.

Data types Synthesizable values
BIT, BIT_VECTOR 0Ll
STD_LOGIC, STD_LOGIC_VECTOR LT, 2 (resolved)
STD_ULOGIC, STD ULOGIC_VECTOR KLU, (unresolved)
BOOLEAN True, False
NATURAL From 0 to +2, 147, 483, 647
INTEGER From —2,147 483,647 to +2,147 483,647
SIGNED From —2,147 483,647 to +2,147 483,647
UNSIGNED From 0 to +2,147 483,647
User-defined integer type Subset of INTEGER
User-defined enumerated type Collection enumerated by user
SUBTYPE Subset of any type (pre- or user-defined)
ARRAY Single-type collection of any type above
RECORD Multiple-type collection of any types above
TYPE byte IS ARRAY (7 DOWNTO 0) OF STD LOGIC; -- 1D
—-- array
TYPE meml IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD LOGIC; -- 2D
—— array
TYPE mem2 IS ARRAY (0 TO 3) OF byte; -- 1Dx1D
—-— array
TYPE mem3 IS ARRAY (0 TO 3) OF STD LOGIC VECTOR(0 TO 7); -- 1Dx1D
—-- array
SIGNAL a: STD_LOGIC; -- scalar signal
SIGNAL b: BIT; -- scalar signal
SIGNAL x: byte; -— 1D signal
SIGNAL y: STD LOGIC _VECTOR (7 DOWNTO 0); -- 1D signal
SIGNAL v: BIT VECTOR (3 DOWNTO 0); -- 1D signal
SIGNAL z: STD LOGIC_VECTOR (x'HIGH DOWNTO 0); -- 1D signal
SIGNAL wl: meml; -- 2D signal
SIGNAL w2: mem2; -— 1Dx1D signal
SIGNAL w3: mem3; -— 1Dx1D signal

Izmir Institute of Technolo% Real-Time and Embedded SKstem Design

Legal Scalar Assignments

x(2) <= a; -- same types (STD_LOGIC), correct indexing
v(0) <= x(0); -- same types (STD_LOGIC), correct indexing
z(7) <= x%(5); -- same types (STD_LOGIC), correct indexing
b <= w(3): -- same types (BIT), correct indexing

wl{0,0) <= x(3); -- same types (STD_LOGIC), correct indexing
wl(2,5) <= v(7); -- same types (STD _LOGIC), correct indexing

w2(0)(0) <= x(2); -- same types (STD _LOGIC), correct indexing

w2(2)(5) <= v(7); -- same types (STD_LOGIC), correct indexing

wl(2,5) <= w2(3)(7); -- same types (STD LOGIC), correct indexing

Izmir Institute of Technology Embedded Systems Lab

lllegal Scalar Assignments

b <= a; -- type mismatch (BIT x STD LOGIC)
wl{(0)(2) <= x(2); -- index of wl must be 2D
w2(2,0) <= a; -- index of w2 must be 1Dx1D

Izmir Institute of Technology Embedded Systems Lab

Legal Vector Assignments

<= "11111110";
<= ('1','1','1','1','1",'1','0"','Z");
<= "11111" & "000"
<= (OTHERS => '1'});

<= (7 =>'0', 1 =>'0', OTHERS => '1');

I - I -

Z <= ¥

yv(2 DOWNTO 0) <= z(6 DOWNTO 4);

w2(0)(7 DOWNTO 0) <= "11110000";

w3(2) <= y;

z <= w3(l);

z(5 DOWNTO 0) <= w3(1l)(2 TO 7);

w3(l) <= "00000000";

w3(l) <= (OTHERS => '0');

w2 <= ((OTHERS=>'0"'),(OTHERS=>'0"), (OTHERS=>'0"), (OTHERS=>'0"));

w3 <= (™"11l11i11i00O", ('O','0"','0",'0","E"' ,'E","E2","2"),
(OTHERS=>'0"), (OTHERS=>'0"));

wl <= ((OTHERS=>'Z'), "11110000" ,"11110000", (OTHERS=>'0"));

Izmir Institute of Technology Embedded Systems Lab
s

lllegal Array Assignments

X <= y; -- type mismatch
v(5 TO 7) <= z(6 DOWNTO 0); -- wrong direction of y
wl <= (OTHERS => '1'); -- wl is a 2D array
wl{(0, 7 DOWNTO 0) <="11111111"; -- wl is a 2D array
w2 <= (OTHERS => 'Z'); -- w2 is a 1Dx1D array
w2(0, 7 DOWNTO 0) <= "11110000"; —-- index should be 1Dx1D
Izmir Institute of Technology Embedded Systems Lab

Single Bit Versus Bit Vector

ENTITY and2 IS

PORT (a, b: IN BIT;

®x: OUT BIT);

END and2:
ARCHITECTURE and2 OF and2 IS
BEGIN

¥ <= a AND b:
END and2:

Izmir Institute of Technology

ENTITY and2 IS
PORT (a, b: IN BIT VECTOR (0 TO 3);
x: OUT BIT VECTOR (0 TO 3));
END and2:
ARCHITECTURE and2 OF and2 IS
BEGIN
¥ == a AND b:
END and2:

Embedded Systems Lab
s

Components

library ieee;
use 1eee.std logic 1164 ._all;
entity add2 is

port (
A, B - 1n std logic _vector(l downto 0);
C - out std logic vector(2 downto 0));
end add2;

architecture imp of add2 is
component full_adder
port (
a, b, c : in std _ulogic;
sum, carry - out std ulogic);
end component;
signal carry : std ulogic;

begin
bitO : full _adder port map (
a => A(O),
b => B(0),
C => 7’07,
sum => C(0),

carry => carry);
bitl : full_adder port map (

a => A(1),

b => B(1),

C => carry,

sum = C(1),

carry => C(2));
end Imp;

Izmir Institute of Technology Embedded Systems Lab

Multiplexer (using when...else)

library ieee;
use i1eee.std logic 1164 ._all;

entity multiplexer_4 1 is
port(inO, Inl, 1n2, In3 - 1In
std ulogic_vector(15 downto 0);
sO, si > in std ulogic;
Z . out
std ulogic vector(15 downto 0));
end multiplexer_4 1;

architecture 1mp of multiplexer_ 4 1 1s
begin

z <= 1n0 when (sO = ”0” and s1 = ’07)
inl when (sO = 1”7 and s1 = ’07)
In2 when (sO = ’0” and s1 = ’17)
In3 when (sO = *1” and s1 = °17)
19.9.9.9.9.0.9.9.0.0.9.9,.0.0.0.0. G-
end Imp;
Izmir Institute of Technology Embedded Systems Lab

Multiplexer (using with...select)

library ieee;
use i1eee.std logic 1164 ._all

entity multiplexer_ 4 1 is
port(in0O, Inl, In2, In3 :

in

std_ulogic_vector(15 downto 0);

sO, sl
Z

in std ulogic;

. out

std ulogic_vector(15 downto 0));

end multiplexer_4 1;

architecture usewith of multiplexer 4 1 is

signal sels : std ulogic_vector(l downto 0); -- Local wires
begin
sels <= s1 & sO; -- vector
concatenation
with sels select
Z <=
in0 when 00",
inl when "'01",
in2 when 10",
in3 when 11",
TIXXXXXXXXXXXXXXXX" when others;

end usewith;

Izmir Institute of Technology

Embedded Systems Lab

Decoder

library ieee;
use i1eee.std logic 1164 ._all;

entity decl 8 1s
port (
sel - 1n std logic _vector(2 downto 0);
res - out std logic vector(7 downto 0));
end decl 8;

architecture imp of decl 8 is
begin

res <= ""00000001" when sel = "000" else
00000010 when sel = 001" else
00000100 when sel = "010" else
00001000 when sel = 011" else
00010000 when sel = 100" else
00100000 when sel = 101" else
01000000 when sel = "110" else
10000000 ;

end Imp;
Izmir Institute of Technology Embedded Systems Lab

A Very Primitive ALU

library ieee;
use 1eee.std logic 1164 .all;
use i1eee.std logic unsigned.all;

entity alu i1s
port (
A, B - 1n std logic vector(7 downto 0);
ADD : i1n std logic;
RES - out std logic vector(7 downto 0));
end alu;

architecture 1mp of alu 1s

begin
RES <= A + B when ADD = *1” else
- A - B;
end Imp;
Izmir Institute of Technology Embedded Systems Lab

Homework

the download location.

2. Write down and Save the VHDL code for “A
primitive ALU” in alul.vhd file.

3. Compile and then try to simulate the circuit!

1. Download Modelsim SAsk the instructor for

	Programmable Logic Devices (PLD)‏
	PLD vs. ASIC
	GALs and PALs
	Using ROMs to Implement a Function
	Example: Using 16x4 ROM to implement a function
	Example: Using 4x4 PAL to implement a function
	Complex Programmable Logic Device ��(CPLD)‏
	Internal Structure of CPLDs
	Field Programmable Gate Array (FPGA)‏
	FPGA Internal Structure (1)‏
	FPGA Internal Structure (2)‏
	VHDL
	EDA (Electronic Design Automation)�� Tools
	Translation of VHDL Code into a Circuit
	VHDL Code Structure
	VHDL Syntax
	VHDL Syntax (cont’d)
	Example: DFF with Asynchronous Reset
	Data Types
	Legal Scalar Assignments
	Illegal Scalar Assignments
	Legal Vector Assignments
	Illegal Array Assignments
	Single Bit Versus Bit Vector
	 Components
	Multiplexer (using when...else)‏
	Multiplexer (using with...select)‏
	Decoder
	A Very Primitive ALU
	Homework

